Stance and swing phase costs in human walking.

نویسنده

  • Brian R Umberger
چکیده

Leg swing in human walking has historically been viewed as a passive motion with little metabolic cost. Recent estimates of leg swing costs are equivocal, covering a range from 10 to 33 per cent of the net cost of walking. There has also been a debate as to whether the periods of double-limb support during the stance phase dominate the cost of walking. Part of this uncertainty is because of our inability to measure metabolic energy consumption in individual muscles during locomotion. Therefore, the purpose of this study was to investigate the metabolic cost of walking using a modelling approach that allowed instantaneous energy consumption rates in individual muscles to be estimated over the full gait cycle. At a typical walking speed and stride rate, leg swing represented 29 per cent of the total muscular cost. During the stance phase, the double-limb and single-limb support periods accounted for 27 and 44 per cent of the total cost, respectively. Performing step-to-step transitions, which encompasses more than just the double-support periods, represented 37 per cent of the total cost of walking. Increasing stride rate at a constant speed led to greater double-limb support costs, lower swing phase costs and no change in single-limb support costs. Together, these results provide unique insight as to how metabolic energy is expended over the human gait cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر قطع عضو همیپلویکتومی بر کینماتیک و نیروی تولیدی عضلات اندام تحتانی حین راه رفتن با پروتز کانادین؛ گزارش موردی

Objective Hemipelvectomy amputation is a surgical procedure in which the lower limb and a portion of pelvic are removed. There are a few studies on the performance of this group of patients while walking. The aim of this paper was to evaluate the effect of hemipelvectomy amputation on kinematics and muscle force generation of the lower limb while walking with Canadian prosthesis. Materials & M...

متن کامل

Design and Evaluation of a Magnetorheological Damper Based Prosthetic Knee

In this work, a magnetorheological (MR) damper based above-knee prosthesis is design and evaluated based on its performance in swing phase and in stance phase. Initially, a dynamic system model for swing phase of a prosthetic leg incorporating a single-axis knee with ideal MR damper was built. The dynamic properties of the damper are represented with Bingham parametric model. From Bingham model...

متن کامل

A neuromechanical strategy for mediolateral foot placement in walking humans.

Stability is an important concern during human walking and can limit mobility in clinical populations. Mediolateral stability can be efficiently controlled through appropriate foot placement, although the underlying neuromechanical strategy is unclear. We hypothesized that humans control mediolateral foot placement through swing leg muscle activity, basing this control on the mechanical state o...

متن کامل

Human-Like Walking with Heel Off and Toe Support for Biped Robot

The under-actuated foot rotation that the heel of the stance leg lifts off the ground and the body rotates around the stance toe is an important feature in human walking. However, it is absent in the realized walking gait for the majority of biped robots because of the difficulty and complexity in the control it brings about. In this paper, a hybrid control approach aiming to integrate the main...

متن کامل

Explanations pertaining to the hip joint flexor moment during the stance phase of human walking.

A hip joint flexor moment in the last half of the stance phase during walking has repeatedly been reported. However, the purpose of this moment remains uncertain and it is unknown how it is generated. Nine male subjects were instructed to walk at 4.5 km/h with their upper body in three different positions: normal, inclined and reclined. Net joint moments were calculated about the hip, knee and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 7 50  شماره 

صفحات  -

تاریخ انتشار 2010